Step of Proof: equiv_rel_self_functionality
12,41
postcript
pdf
Inference at
*
1
1
I
of proof for Lemma
equiv
rel
self
functionality
:
1.
T
: Type
2.
R
:
T
T
3. EquivRel(
T
;
x
,
y
.
R
(
x
,
y
))
4.
a
:
T
5.
a'
:
T
6.
b
:
T
7.
b'
:
T
8.
R
(
a
,
b
)
9.
R
(
a'
,
b'
)
10.
R
(
a
,
a'
)
R
(
b
,
b'
)
latex
by ((RepUnfolds ``equiv_rel refl sym trans`` 3)
CollapseTHEN ((Auto_aux (first_nat 1:n
C
) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
3.
a
:
T
.
R
(
a
,
a
)
C1:
4.
a
,
b
:
T
.
R
(
a
,
b
)
R
(
b
,
a
)
C1:
5.
a
,
b
,
c
:
T
.
R
(
a
,
b
)
R
(
b
,
c
)
R
(
a
,
c
)
C1:
6.
a
:
T
C1:
7.
a'
:
T
C1:
8.
b
:
T
C1:
9.
b'
:
T
C1:
10.
R
(
a
,
b
)
C1:
11.
R
(
a'
,
b'
)
C1:
12.
R
(
a
,
a'
)
C1:
R
(
b
,
b'
)
C
.
Definitions
Trans(
T
;
x
,
y
.
E
(
x
;
y
))
,
Sym(
T
;
x
,
y
.
E
(
x
;
y
))
,
Refl(
T
;
x
,
y
.
E
(
x
;
y
))
,
P
&
Q
,
EquivRel(
T
;
x
,
y
.
E
(
x
;
y
))
origin